Цель РУБИН ЦЕНТР БЕЗОПАСНОСТИ - предложение широкого спектра услуг по низким ценам на постоянно высоком качестве.


1) резкое увеличение скорости экзотермических процессов в веществе, приводящее к возникновению очага пожара; 2) загорание без внешнего источника зажигания, происходящее в результате самоинициируемых экзотермических процессов. Особенностью С. является то, что оно возникает в результате окисления при относительно низких температурах (см. Температура самовозгорания) в средах, представляющих собой мелкодисперсные вещества и материалы. Важнейшими условиями С. являются способность веществ к указанным процессам и аккумуляция выделяемой энергии, что наиболее свойственно сыпучим материалам при скопления в больших объёмах (см. Склонность к самовозгоранию). Процессу возникновения горения при С. предшествует медленная стадия самонагревания. С. происходит там, где процесс самонагревания обеспечивает повышение температуры до определенной критической величины. Существенная разница в процессе загорания и самовозгорания заключается в разл. периодах индукции: при загорании этот период исчисляется секундами и минутами, а при самовозгорании — часами и даже днями и месяцами.
     В зависимости от источника самонагревания процессы С. подразделяются на микробиологические, тепловые и химические.
     Микробиологическое С. характерно для органических дисперсных и волокнистых материалов, внутри которых возможна жизнедеятельность бактерий и микроорганизмов, сопровождающаяся экзотермическими проявлениями. С. способствуют: повышенная влажность материалов; масличность; засорённость посторонними включениями; пористость, обеспечивающая диффузию кислорода к скоплениям дисперсных веществ и материалов и большую сорбционную способность продуктов термического и термо- окислительного распада, катализирующих процесс самонагревания и С.
     При изменении температуры в объёме материала обычно фиксируют 2 температурных максимума, отстоящих друг от друга промежутком времени. Первый максимум наступает в промежутке от одного дня до недели с момента зарождения очага и достигает температуры 40—45 °С. В данном диапазоне температур выделение тепла происходит за счёт жизнедеятельности микрофлоры, неспособной существовать при температуре св. 45 °С. Второй максимум, достигающий 75—85 °С, возникает за счёт развития термофильных бактерий. На процесс тепловыделения основное влияние оказывают 2 фактора — размер популяции микроорганизмов (размер очага самонагревания) и предельная температура, при которой они могут существовать. Дополнительным источником выделения тепла в материалах растительного происхождения является их дыхание (напр., быстрый рост температуры в небольших кучах свежескошенной травы или при формировании стогов сена).
     Дисперсные материалы имеют чёткую границу соприкосновения с окружающей средой. По этой границе воздух проникает между частицами внутрь массы материала, адсорбируется в порах частиц или волокон. Наличие развитой поверхности твёрдого материала с адсорбированным на ней кислородом воздуха — одно из условий теплового С., к которому наиболее склонны материалы, обладающие большой пористостью и структурой, обеспечивающей проникновение кислорода в зону реакции. Склонность к С. увеличивается при повышении адсорбционной способности материала.
     Поскольку промежуточным продуктом при С. большинства органических материалов является уголь, закономерности его самовозгорания оказывают существенное влияние на процесс в целом. При этом значительную роль в С. угля играет его способность сорбировать пар и влагу на начальной стадии процесса, протекающего с экзотермическим эффектом. Чем больше объём дисперсного материала, тем лучше условия аккумуляции тепла в нём и выше вероятность его воспламенения. С увеличением пористости частиц и пористости слоя (начальной плотности) улучшается перенос кислорода к межфазной поверхности в зону реакции окисления. Это способствует более интенсивному самонагреванию материала, т. к. уменьшается теплопроводность смеси частиц с воздухом и увеличивается скорость нагрева за счет снижения теплоёмкости ед. объёма материала. Наоборот, уплотнение слоя частиц способствует отводу тепла из зоны реакции вследствие увеличения его теплопроводности. Важную роль в процессе самонагревания и самовозгорания веществ и материалов играет влага.
     Тепловое с. характеризуется тем, что оно начинается при предварительном умеренном нагреве. Примером такого вида с. является самовозгорание древесно-волокнистых плит и изоляционного материала из стекловолокна при складировании больших масс продукции после производственного процесса, связанного с повышенной температурой.
     В основе химического с. лежат процессы химического взаимодействия веществ и материалов или их окисления, которые сопровождаются выделением большого количества тепла. Примерами химических реакций, вызывающих горение при С., являются: действие на органические материалы концентрированных серной и азотной кислот; самопроизвольное загорание промасленной ветоши; возникновение горения пирофорных материалов: некоторых металлов, гидридов металлов, металлоорганических соединений и др. (см. Пирофорность).
     Методы определения склонности веществ и материалов к С. основаны на определении критических условий воспламенения вещества (материала), характеризующих кинетику этого процесса. Профилактика С. основана на применении методов и средств, уменьшающих химическую активность реагирующих веществ или обеспечивающих стационарные условия теплообмена между материалом и окружающей средой при температуре ниже температуры самовозгорания для заданных условий применения, хранения или транспортирования материалов. Выбор метода защиты определяется свойствами материала, особенностями технологического процесса и экономической целесообразностью.
     Для обнаружения очага С. внутри массы хранящегося продукта устанавливают систему датчиков, реагирующих на повышение температуры. Эта система дистанционного контроля зачастую бывает малоэффективна в силу низкой теплопроводности и высокой теплоемкости дисперсного материала, вследствие чего очаг самонагревания и С. регистрируется с большим опозданием. Более оперативным способом обнаружения очага повышенной температурной активности, возникающего в силу разл. причин в насыпи дисперсного материала, является способ, основанный на анализе продуктов термической и термо- окислительной деструкции (напр., окись углерода, метан, водород), по номенклатуре и содержанию которых определяются стадии самонагревания и С., а также местонахождение очага С. При несвоевременном обнаружении очага С. горючие газы, выделяющиеся в замкнутом пространстве, в смеси с воздухом и при наличии источника зажигания (напр., очага самовозгорания) могут привести к взрыву.